• Fernando González Becerra •

INTRODUCCIÓN A LA DINÁMICA DE SISTEMAS EN LA INGENIERÍA INDUSTRIAL

González Becerra, Fernando

Introducción a la dinámica de sistemas en la ingeniería industrial / Fernando González

Becerra. -- 1a. ed. --

Bogotá: Universidad Militar Nueva Granada, 2019. p. 180

Incluye datos curriculares del autor e índice analítico. -- Contiene bibliografía. -- Texto en español con resúmenes en inglés.

ISBN 978-958-8795-84-3 -- 978-958-8795-85-0 (digital)

- $1.\,Ingeniería\,industrial Métodos \,de \,simulación \,2.\,Dinámica \,de \,sistemas \,3.\,As eguramiento \,de \,la \,calidad$
- 4. Simulación (Ingeniería)
- I. Título

CDD: 658.5 ed. 23 CO-BoBN- a1049833

Introducción a la dinámica de sistemas en la ingeniería industrial
© Fernando González Becerra
© Universidad Militar Nueva Granada
Colección Docencia
© Vicerrectoría de Investigaciones
© Editorial Neogranadina
Bogotá, Colombia
editorial.neogranadina@unimilitar.edu.co

Fernando González Becerra

INTRODUCCIÓN A LA DINÁMICA DE SISTEMAS EN LA INGENIERÍA INDUSTRIAL

Cómo citar: APA: Becerra González, F. (2019). Introducción a la dinámica de sistemas en la ingeniería industrial. Bogotá: Editorial Neogranadina. MLA: Becerra González, Fernando. Introducción a la dinámica

de sistemas en la ingeniería industrial. Bogotá: Editorial

Becerra González, Fernando. Introducción a la dinámica de sistemas en la ingeniería industrial. Colección Docencia. Bogotá: Editorial,

Neogranadina, 2019.

Neogranadina, 2019.

Chicago:

Introducción a la dinámica de sistemas en la ingeniería industrial

Fernando González Becerra *

RESUMEN

El objetivo de este libro es introducir la dinámica de sistemas como una metodología que integra los elementos de un sistema de forma holística. En este sentido, el lector encontrará en el libro una descripción de *sistema* como las estructuras que soportan los diversos comportamientos en función del tiempo. También se estudian los elementos que intervienen en la conformación y clasificación de un sistema, como los flujos, las demoras, los bucles de realimentación, los diagramas de Forrester, entre otros. Al final, el libro exalgunos ejemplos de aplicación en industrias de diversos sectores económicos. De esta manera, el lector podrá además realizar modelos de simulación continua y representar, de forma práctica y real, cualquier situación de la praxis empresarial. Esto permite cambiar algunas variables críticas que pueden generar cambios significativos en las mediciones de desempeño de un proceso real y, así, se pueden obtener resultados impensables de mejora.

PALABRAS CLAVE

Dinámica de sistemas, simulación continua, flujos de tiempo, velocidad de flujos, ingeniería industrial, praxis empresarial.

DOI: http://dx.doi.org/10.18359/rcin.1671

^{*}Profesor de tiempo completo de la Universidad Militar Nueva Granada Contacto: fernando.gonzalez@unimilitar.edu.co

Introduction to system dynamics in industrial engineering

Fernando González Becerra *

ABSTRACT

This book aims to introduce system dynamics as a method that holistically integrates the elements of a system. In this way, the reader will find in the book a description of system: the structure that supports various time-dependent behaviors. The elements involved in the formation and classification of a system are also studied, such as flows, delays, feedback loops, Forrester diagrams, etc. Finally, the document gives some examples in industries of applications in various economic sectors. In this manner, the reader may also make continuous simulation models, representing any situation of business praxis in a practical and real manner. This allows to change some critical variables that can produce significant changes in the performance measurements of a real process and, thus, obtain unthinkable improvement results.

KEYWORDS

System dynamics, continuous simulation, time flows, flow rate, industrial engineering, business praxis.

DOI: http://dx.doi.org/10.18359/rcin.1671

Agradezco, en primera instancia, a Dios todopoderoso, por darme licencia para culminar mi segundo libro. Agradezco también a la Universidad Militar Nueva Granada, por permitir su publicación, a mi esposa Lorena, por su amor, apoyo y entrega, y a mis hijos, María Fernanda y Alejandro, por su ternura, amor y dedicación.

1. Introducción a la sistémica	27
1.1. Tipos de sistemas	38
1.1.1. Sistema estático	38
1.1.2. Sistema dinámico	38
1.2.Modelos	41
1.2.1. Modelos físicos	41
1.2.2. Modelos análogos	42
1.2.3. Modelos simbólicos o matemáticos	44
1.3. Simulación continua o dinámica de sistemas	45
1.3.1. Elementos	45
1.3.2. Redes de comunicación	46
1.3.3. Límites	46
1.4. Antecedentes históricos de la dinámica de sistemas	47
1.5. Beneficios de la simulación continua	49
2. Elementos de la dinámica de sistemas	51
2.1. Características funcionales de los sistemas	53
2.1.1. Flujos	53
2.1.2. Demoras, retrasos o retardos	54
2.1.3. Bucles de realimentación o diagramas causales	54
2.2. Diagramas de Forrester	61
2.2.1. Los niveles	63

2.2.2. Las variables de flujo

63

2.2.3. Los canales de información	63
2.2.4. Las variables auxiliares	64
2.2.5. Las nubes	64
2.2.6. Las variables exógenas	64
2.2.7. Las ecuaciones diferenciales en la simulación continua	64
3. Estructuras básicas	67
3.1. Diagramas de Forrester para la realimentación positiva	69
3.1.1. Ecuaciones diferenciales para la realimentación positiva	74
3.2. Diagramas de Forrester para la retroalimentación negativa	74
3.2.1. Ecuaciones diferenciales para la realimentación negativa	79
3.3. Comportamientos diversos	80
3.3.1. Modelo logístico	80
3.3.2. Modelo de curva de aprendizaje	84
3.3.3. Modelo de inventario	87
3.3.4. Modelo de oferta vs. demanda	89
3.3.5. Modelo de descomposición de un producto alimenticio	90
3.3.6. Modelo de enfriamiento de un material	91
4. Demoras o retrasos	95
4.1. Ecuaciones para demoras de primer orden con niveles y con funciones de STELLA	98
4.2. Ecuaciones para demoras de tercer orden con niveles y funciones de STELLA	100
4.3. Ecuaciones para demoras de séptimo orden con niveles y funciones de STELLA	104
5. Casos aplicados en la ingeniería industrial	111
5.1. Caso industrial de producción de leche ultrapasteurizada	113
5.1.1. Análisis del modelo de producción de	
leche ultrapasteurizada	118

5.1.2. Ecuaciones del modelo de producción de	
leche ultrapasteurizada	125
5.2. Caso simulado de un proceso textil	130
5.2.1. Análisis del modelo de producción textil	135
5.2.2. Ecuaciones del proceso textil	142
5.3. Caso de un criadero de reses	145
5.3.1. Análisis del modelo de criadero de reses	147
5.3.2. Ecuaciones del caso del criadero de reses	152
5.4. Caso aplicado a la investigación de mercados	152
5.4.1 Análisis del modelo de investigación de mercados	156
5.4.2. Ecuaciones del caso de investigación de mercados	158
5.5. Caso aplicado a la seguridad industrial	161
5.5.1. Análisis del modelo de seguridad industrial	163
5.5.2. Ecuaciones del caso de seguridad industrial	164
5.6. Caso de un sistema de producción más limpia	166
5.6.1. Ecuaciones del caso de un sistema de	
producción más limpia	169
Conclusiones	171
Bibliografía	173
Índice analítico	177

figuras tablas y ndice de

Figuras

FIGURA 1.1. Estructura típica de un sistema.	31
FIGURA 1.3. Ejemplo de una secuencia de actividades en un proceso de servicio	de
paquetería.	35
FIGURA 1.4. Mapa conceptual, sobre el libro de Peter Senge	
La quinta disciplina.	37
FIGURA 1.5. Ejemplo de sistema dinámico no natural: sistema logístico	
de servicio de entrega de paquetería.	39
FIGURA 1.6. Ejemplo de sistema dinámico no natural: sistema de gestión	
en salud y seguridad industrial.	40
FIGURA 1.7. Prototipo experimental de los automóviles Audi TTS 2.0 y	
Volvo S-60, vehículos de última generación.	42
FIGURA 1.8. Mapa georeferenciado de Bogotá, Colombia.ty.	43
FIGURA 1.9. Simulación discreta de un sistema de producción metalmecánico.	44
FIGURA 2.1. Proceso de elaboración del pan.	54
FIGURA 2.2. Esquema de un diagrama con realimentación positiva.	55
Elaborado por el autor.	55
FIGURA 2.5. Bucle que relaciona la producción, los costos y el volumen	
de producción.	57
FIGURA 2.6. Bucle que relaciona la producción, la cantidad de materia	
prima y el producto terminado.	57
FIGURA 2.7. Bucle que relaciona la productividad, los costos, las utilidades, los	
incentivos y el grado de motivación.	58
FIGURA 2.8. Bucle que relaciona los ingresos, la inversión, la calidad, el	
prestigio y los competidores potenciales.	58
FIGURA 2.9. Bucles que relacionan los elementos de la producción y las ventas.	59
FIGURA 2.10. Bucles que relacionan elementos para el manejo de inventarios.	60
FIGURA 2.11. Bucles que relacionan una diversidad de variables	
en un sistema ambiental.	60

FIGURA 2.12. Bucles que relacionan una diversidad de elementos en	
un sistema económico.	61
TABLA 2.1. Convenciones ideadas por Jay Forrester para representar los	
diferentes elementos que conforman un sistema.	62
FIGURA 2.13. Símil hidrodinámico para entender la forma de estructurar	
las ecuaciones diferenciales.	65
FIGURA 3.1. Diagrama de Forrester con realimentación positiva.	69
FIGURA 3.2. Retroalimentación positiva generada con distintas	
diferenciales de tiempo ($dt = 1$, $dt = 0.5$ y $dt = 0.25$).	70
FIGURA 3.3. Diagrama de Forrester para la realimentación negativa.	75
FIGURA 3.4. Realimentación negativa con diferentes diferenciales de tiempo.	En
las tablas presentadas, dt : diferencial de tiempo; N : niveles del sistema; F : varia	ble
del flujo del sistema; OB : parámetro objetivo; FT : tasa de flujo.	76
FIGURA 3.5. Diagrama de Forrester para un modelo logístico	81
FIGURA 3.6. Gráfico del comportamiento en <i>s</i> de un modelo logístico.	82
FIGURA 3.7. Diagrama de Forrester para la curva de aprendizaje	84
FIGURA 3.8. Gráfica de aprendizaje en función del tiempo.	86
FIGURA 3.9. Gráfica de precio vs. tiempo en el modelo de inventarios.	88
FIGURA 3.10. Gráfica de precio vs. tiempo en el modelo de demanda	
vs. producción con un $C_1 = 4$.	90
FIGURA 4.1. Demoras de primer orden con niveles y funciones de STELLA.	97
FIGURA 4.2. Nivel generado acumulado con demora de primer orden y con ni	veles
y funciones de STELLA 9.02	99
FIGURA 4.3. Flujo generado con demoras de primer orden y con niveles	
y funciones de STELLA.	100
FIGURA 4.4. Demoras de tercer orden con y sin funciones de STELLA.	101
FIGURA 4.5. Nivel generado acumulado con demora de tercer orden y con niv	eles y
funciones de STELLA 9.02.	102
FIGURA 4.6. Flujo generado con demoras de tercer orden utilizando funciones	s de
STELLA.	103
FIGURA 4.7. Flujo generado en STELLA con demoras de tercer orden	
utilizando los n niveles requeridos.	104
FIGURA 4.8. Demoras de séptimo orden con niveles.	105

FIGURA 4.11. Flujo generado con demoras de séptimo orden	
con los niveles requeridos.	108
FIGURA 5.1. Diagrama de Forrester para el proceso de producción de	
leche ultrapasteurizada.	116
FIGURA 5.2. Continuación del diagrama de Forrester para el proceso de	
producción de leche ultrapasteurizada.	117
FIGURA 5.3. Comportamiento gráfico de los nacimientos de vacas, del número	de
reses lecheras y de muertes de vacunos. Resultados obtenidos por el autor con la	ı
simulación en el <i>software</i> STELLA.	118
FIGURA 5.4. Comportamiento gráfico de la leche cruda aceptada. Resultados obtenidos por el autor con la simulación en el <i>software</i> STELLA.	119
FIGURA 5.5. Comportamiento gráfico de la leche aceptada para esterilización en la obtención de queso y leche ultrapasteurizada. Resultados obtenidos por el	
autor con la simulación en el <i>software</i> STELLA.	120
FIGURA 5.6. Comportamiento gráfico de la leche para uнт a producir y del inv	en-
tario que debe mantenerse del producto terminado. Resultados obtenidos por e	1
autor con la simulación en el <i>software</i> STELLA.	121
FIGURA 5.7. Comportamiento gráfico de la leche filtrada, desnatada, homogen	eiza-
da, uht y las bolsas de leche. Resultados obtenidos por el autor con la simulación	n en
el <i>software</i> STELLA.	122
FIGURA 5.8. Comportamiento gráfico de las bolsas defectuosas, no defectuosa	as y
las bolsas de leche. Resultados obtenidos por el autor con la simulación	
en el <i>software</i> stella.	123
FIGURA 5.9. Comportamiento gráfico de las bolsas terminadas, las bolsas para	
inventario y las bolsas para distribuir. Resultados obtenidos por el autor con	
la simulación en el <i>software</i> STELLA.	124
FIGURA 5.10. Comportamiento gráfico de los ingresos, los egresos y la utilidad	ł.
Resultados obtenidos por el autor con la simulación en el <i>software</i> STELLA.	125
FIGURA 5.12. Diagrama de Forrester para la producción de tela, elaborado por	el
autor en el <i>software</i> STELLA.	131
FIGURA 5.13. Diagrama de Forrester para la producción de camisetas.	133
FIGURA 5.14. Diagrama de Forrester para la operación de la tienda	
comercializadora.	135

FIGURA 5.15. Comportamiento gráfico de las unidades cardadas, en torsión	
y enrolladas. Resultados obtenidos por el autor con la simulación	
en el software Stella.	137
FIGURA 5.16. Comportamiento gráfico de las unidades cardadas, en torsión	
y enrolladas. Resultados obtenidos por el autor con la simulación	
en el software STELLA.	138
FIGURA 5.17. Comportamiento gráfico de las unidades bordadas, las	
inspeccionadas y las ubicadas en el almacén de producto terminado.	
Resultados obtenidos por el autor con la simulación en el <i>software</i> STELLA.	140
FIGURA 5.18. Comportamiento gráfico de las unidades inventariadas, las	
unidades demandadas y las no vendidas. Resultados obtenidos por el autor	
con la simulación en el <i>software</i> STELLA.	141
FIGURA 5.20. Gráfica del comportamiento de la utilidad del criadero de	
reses durante 12 meses. Resultados obtenidos por el autor con la	
simulación en el <i>software</i> STELLA.	147
FIGURA 5.21. Gráfica del comportamiento de la cantidad de reses durante	
12 meses. Resultados obtenidos por el autor con la simulación	
en el software STELLA.	148
FIGURA 5.22. Gráfica del comportamiento de los costos e ingresos durante 12	me-
ses. Resultados obtenidos por el autor con la simulación en el <i>software</i> STELLA.	149
FIGURA 5.23. Gráfica del comportamiento de la cantidad de reses que nacen y	7
mueren durante 12 meses. Resultados obtenidos por el autor con la simulación e	en el
software Stella.	150
FIGURA 5.24. Gráfica del comportamiento de la tasa de producción de	
biogás durante 12 meses. Resultados obtenidos por el autor con la	
simulación en el <i>software</i> STELLA.	151
FIGURA 5.25. Gráfica del comportamiento de la cantidad de reses, de la tasa de	;
producción de biogás y de la utilidad conseguida durante 12 meses. Resultados	ob-
tenidos por el autor con la simulación en el software STELLA.	151
FIGURA 5.26. Diagrama de Forrester correspondiente a la investigación de mer	rca-
dos, elaborado por el autor en el <i>software</i> STELLA.	155
TABLA 5.6. Simulación de los resultados en STELLA de la gestión en la compañí	ia de
investigación de mercados durante un año de labores.	156

FIGURA 5.27. Gráfica del comportamiento del número de	
encuestas realizadas	157
y de la población encuestada. Resultados obtenidos por el autor con	
la simulación en el software STELLA.	157
FIGURA 5.28. Gráfica correspondiente a la recopilación de datos y la informaci	ón
codificada. Resultados obtenidos por el autor con la simulación	
en el <i>software</i> STELLA.	158
FIGURA 5.29. Diagrama de Forrester para el sistema de seguridad	
industrial.	162
TABLA 5.7. Simulación en STELLA de 12 meses de accidentes laborales y	
los costos generados según el grado de gravedad.	163
FIGURA 5.30. Gráfica que presenta la simulación de la utilidad y los accidentes	
laborales en un sistema de seguridad industrial. Resultados obtenidos por el aut	or
con la simulación en el <i>software</i> STELLA.	164
FIGURA 5.31. Diagrama de Forrester del comportamiento de un sistema de	
producción más limpia.	168
FIGURA 5.32. Gráfica que presenta la simulación de un sistema de	
producción más limpia. Resultados obtenidos por el autor con la simulación	
en el <i>software</i> STELLA.	169

Tablas

TABLA 5.1. Resultados de la simulación en STELLA de las unidades cardadas,	
las unidades en torsión y las unidades enrolladas durante 12 semanas.	136
TABLA 5.2. Resultados de la simulación en STELLA de la producción de	
tela durante 12 semanas.	137
TABLA 5.3. Resultados de la simulación en STELLA de la producción de	
camisetas durante 12 semanas.	139
TABLA 5.4. Resultados de la simulación en stella del punto de venta	
durante 12 semanas.	140
TABLA 5.5. Resultados de la simulación en STELLA del caso del	
criadero de reses.	148